

Determining the Effectiveness of Drugs using EC50 and MIC Assays

Sara Knapp, Dr. Rachael Baker and Dr. Amy Wilstermann Calvin University, Grand Rapids, Michigan

Summary

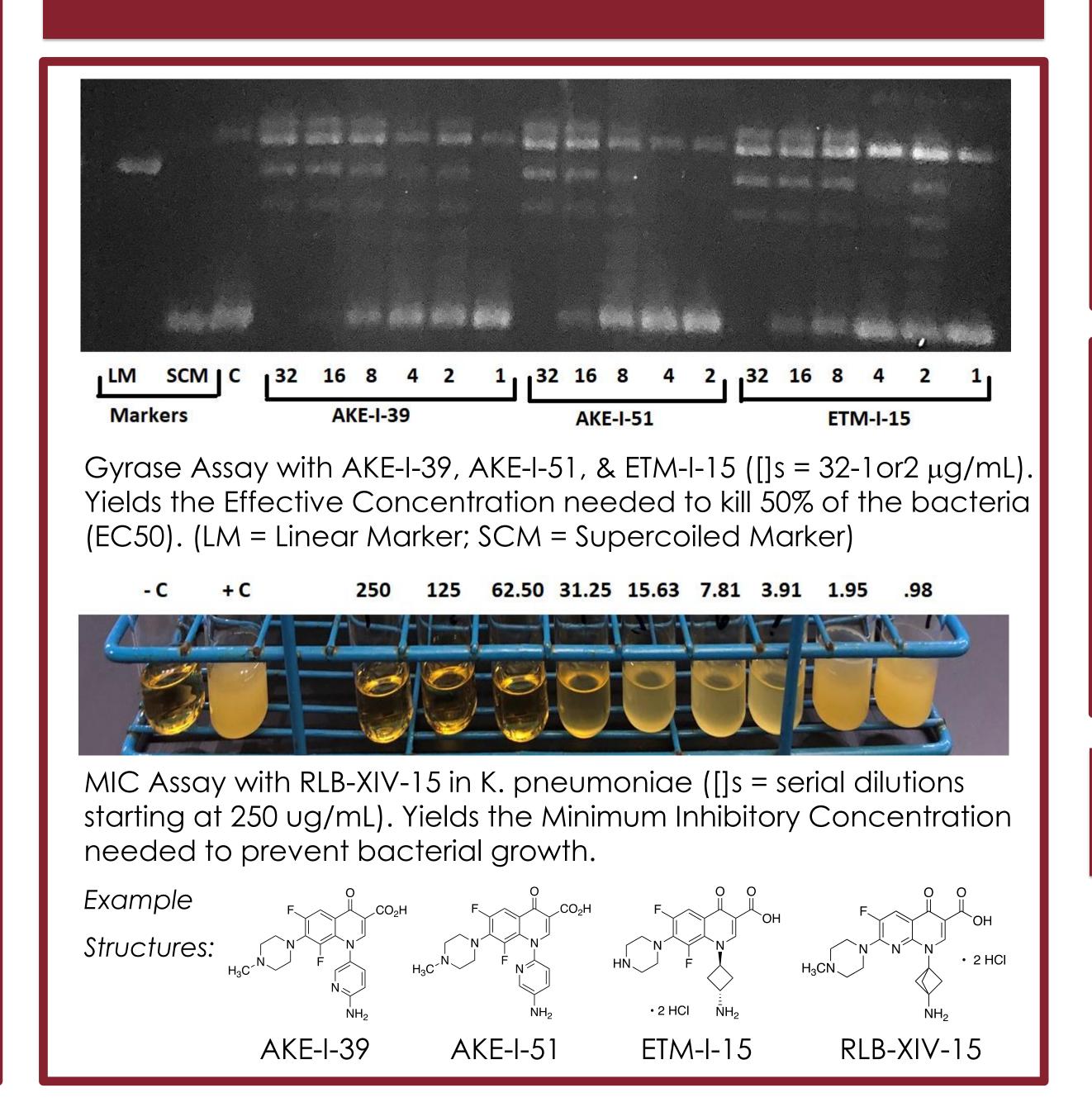
Background

- Antibiotic resistance comes from bacterial mutations in the antibiotic binding site (which prevents antibiotic binding)
- These new antibiotics target both DNA Gyrase and DNA Topoisomerase IV (fluoroquinolones)
- This improves efficacy because if one binding site is mutated, the other is still available
- This makes it harder for bacteria to form resistance against the drug

Methods

- 1) Gyrase Assay
 - Tests what the drug does to the DNA Gyrase inside the bacteria
 - Gyrase supercoils DNA without which the DNA can't form chromosomes -> can't replicate
- 2) Minimum Inhibitory Concentration (MIC) Assay
 - Tests whether the drug can penetrate the bacteria's thick cell wall to disable DNA Gyrase

Results/Data

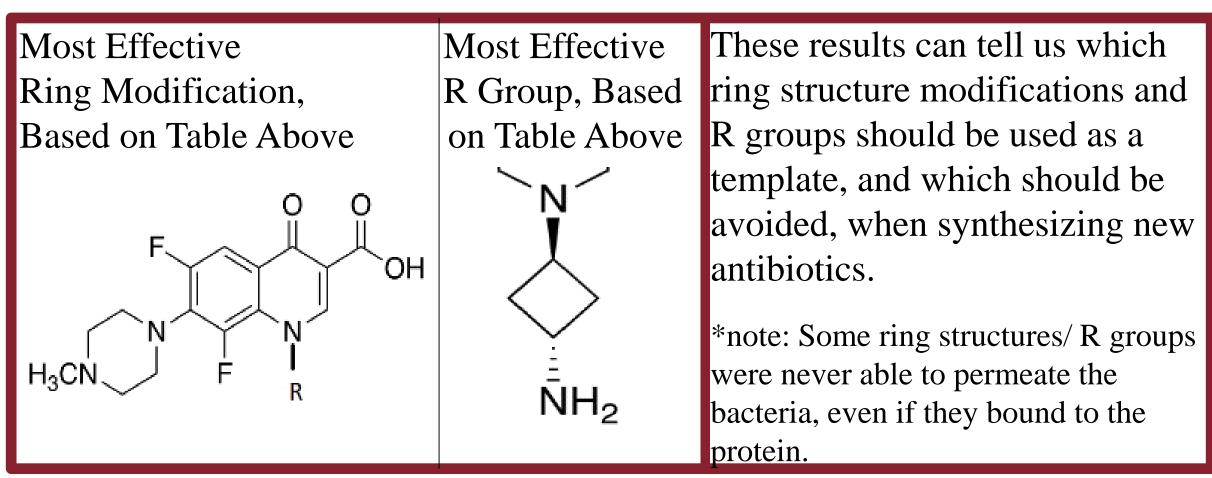

 Standard deviations of EC50s and MICs are used to quantify the effectiveness of the compounds

Conclusions/Outcomes/Future

- Conclusion: effect of structure on binding affinity and ability to get into the bacteria (see Results)
- Complete a new set of assays with the best compounds:
- TopolV Assay: tests that the drugs are dualtargeting
- Human Topo II Assay: tests that the drugs won't affect human Topoisomerase II (only bacterial)
- Resistance Testing: tests the efficacy of the compounds against bacteria that have resistance to fluoroquinolones

A methodology for determining potency of modified antibiotics

Results



Results

Compound Identifier	Avg # of SD's from Mean	Ring Structure	R Group
RLB-XIII-140	-0.92		
ETM-I-11	-0.64		
MRB-I-3	-0.56		
AKE-I-39	-0.55		
ETM-I-10	-0.03		
RLB-XIV-15	0.08		
RLB-XIII-149	0.62		

This table shows an example of how to compare structural changes between compounds. Using this table, ring structure and R group can be easily compared, using standard deviation (as explained more in the table note below).

	Top Compounds with Structure, EC50, and MIC							
	Compound	Chemical	EC50 or	Compound	Chemical	EC50 or		
	Identifier	Structure	MIC	Identifier	Structure	MIC		
	RLB-XIII-140	H ₃ CN F NH ₂		ETM-I-10	H ₈ CN F NH ₂			
EC50			2.79			10.6		
MIC (KP)			18. ug/mL			29. ug/mL		
MIC (SA)			78. ug/mL			88. ug/mL		
	ETM-I-11	H ₂ CN N N N N N N N N N N N N N N N N N N		RLB-XIV-15	H ₃ CN N N 2 HCI			
EC50			9.20			12.0		
MIC (KP)			8. ug/mL			42. ug/mL		
MIC (SA)			21. ug/mL			26. ug/mL		
	MRB-I-3	O ₂ N		RLB-XIII-149	NH ₂			
EC50			5.41			2.05		
MIC (KP)			42. ug/mL			75. ug/mL		
MIC (SA)			17. ug/mL			350. ug/mL		
	AKE-I-39	H ₃ C N F N F N F N F N F N F N F N F N F N		This table shows structure and EC50/MIC results of				
EC50			9.98	the above, best-performing compounds, in order of		•		
MIC (KP)			5. ug/mL	how many standard deviations away from the mean in the negative direction the compound is (how				
MIC (SA)			42. ug/mL	effective it is).				

References and Acknowledgments

Special thanks to: Dr. Michael Barbachyn and Luke Burroughs for providing resources and compounds; Dr. Rachael Baker and Dr. Amy Wilstermann for their guidance, both personally and professionally.